
NPS-CS-10-011

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

PARALLELIZING SHA-256, SHA-1 AND MD5 AND AES
ON THE CELL BROADBAND ENGINE

 By

George Dinolt David Canright
Bruce Allen Simson Garfinkel

 October 25, 2010

Approved for public release; distribution is unlimited

Prepared for: Defense Intelligence Agency

 Washington, D.C.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by the Defense Intelligence Agency (DIA), Washington,
DC.

Reproduction of all or part of this report is authorized.

This report was prepared by:

___________________ ___________________
George Dinolt Bruce Allen
Associate Professor Associate Professor

___________________ ___________________
David Canright Simson Garfinkel
Research Associate Associate Professor

Reviewed by: Released by:

__________________ _______________________
Peter Denning Karl A. van Bibber
Chairman Vice President and
Department of Computer Science Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

iv

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

25–10–2010 Technical Report 2009-10-01—2010-09-30

Parallelizing SHA-256, SHA-1 and MD5 and AES on the Cell Broadband
Engine

George Dinolt, Bruce Allen, David Canright, Simson Garfinkel

Naval Postgraduate School
Monterey, CA 93943 NPS-CS-10-011

DIA

Approved for Public Release; distribution is unlimited.

The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the
Department of Defense or the U.S. Government.

The Cell BE Architecture connects a Power processor with several “synergistic processing units” via a high-speed bus,
allowing parallel processing on a chip. Architectural features enabling high speed performance include SIMD, many wide
registers, DMA provisions, and dual-issue instructions. We have developed extraordinarily high performance implementatioins
of SHA-256, SHA-1 and MD5 for this architecture. We have also developed parallelized implementations of AES Encryption.

Unclassified Unclassified Unclassified UU 55

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Table of Contents

1 Introduction . 1
2 Implementation . 3
3 Timing Results . 10
4 AES on the SPU . 11
5 Parallel Architectures with AES 12
6 Conclusion . 13
A Introduction . 14
B Application Overview . 15
C NPS Cell PPU Hash Utilities . 16
D NPS Cell SPU Hash Utilities Overview 30
E Application hash files for Maximum Throughput. 32
F Application hash single file for Maximum Single-file Throughput . . . 42

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Abstract

The Cell BE Architecture connects a Power processor with several “synergis-
tic processing units” via a high-speed bus, allowing parallel processing on a chip.
Architectural features enabling high speed performance include SIMD, many wide
registers, DMA provisions, and dual-issue instructions. We have developed ex-
traordinarily high performance implementatioins of SHA-256, SHA-1 and MD5
for this architecture. We have also developed parallelized implementations of AES
Encryption.

1 Introduction
The Cell BE is a general purpose microprocessor architecture designed by Sony, Toshiba and
IBM that features a heterogenous processing architecture and a high-speed interconnect be-
tween the processing elements and the system memory. The Cell Broadband Engine (Cell BE)
is a 3.2 Ghz microprocessor available on the Sony Playstation 3, on the dual-processor configu-
ration on an IBM QS22 card for the IBM BladeCenter, and as a PCI co-processor card available
from IBM and Mercury Computer Systems.

This paper presents our results in developing high-speed implementations of SHA-256, SHA-1
and MD5 hashing algorithms. Although the Cell has a reputation as being hard to program,
we show that exercising direct control over a small number of independent processing elements
makes it possible to achieve extraordinarily high performance on real-world problems.

In November 2009 IBM confirmed rumors that there would be no further development on the
existing Cell processor line[7]. Nevertheless, the results of this paper are important for several
reasons:

1. These results show that architectural provisions on the Cell such as SIMD lanes and
DMA can bring significant computational power to real-world problems on commodity
hardware.

2. Although the current generation of Cell architecture is being abandoned, IBM will be
including the Cell VLIW cores in upcoming versions of its Power 7 microprocessors
targeted at supercomputers. IBM’s QS22 blades will remain in production for more than
two years. Organizations needing high-performance functions today with the flexibility
of a general purpose CPU and enterprise-class hardware can use our code today.

3. Many of the lessons learned from developing high-speed implementations of these algo-
rithms on Cell will be applicable to future heterogeneous architectures.

We present the following:

• Implementation strategies used to optimize hashing.
• Timing results for hashing operations.
• Additional timing results for AES Encryption.

1

1.1 Prior Work
IBM has reported the speed of AES encryption on the Cell BE as one of its standard benchmarks
from the first of its published Cell papers. The code that produces those timing results has never
been publicly released.

Yang and Goodman demonstrated AES running on an AMD HD 2900 XT GPU with speeds
“16 times faster than high end CPUs.[8]”

Harrison and Waldron implemented AES on the GeForce 6600GT and GeForce 7900GT graphic
coprocessor cards and found that the performance of the GPUs was limited by the speed that
data could be transferred to and from the GPU[4].

Bhaskar et al. developed a strategy for efficient Galois Field Arithmetic implementation on
SIMD Architectures[1].

Costigan and Scott developed a version of SSL that used the Cell BE for cryptographic support[3].

2

2 Implementation
The implementation of our hashing algorithms utilize the architecture of the Cell BE:

• SIMD lanes, instruction pipelining, and many registers
• Parallel Processing
• SPU initialization
• PPU task delegation
• Shared data structures
• DMA
• Synchronization

2.1 SIMD lanes, instruction pipelining, and many registers
In implementing hashing and encryption on the Cell BE, we have exploited several distinct
levels of parallelism. (Here we use a broad meaning of parallelism: utilizing different hardware
resources simultaneously in achieving a task.)

1. SIMD instructions can operate on several parts of registers in parallel.
2. Each instruction pipeline can perform (different stages of) several instructions at once.
3. The two pipelines in an SPU can both execute instructions in parallel.
4. Multiple SPUs can work on a task simultaneously, in a pipelined fashion and/or perform-

ing the same steps on parallel data.
5. In a dual-processor configuration, both Cells can work in parallel.

By optimizing all these levels of parallelism, our implementations of hashing and encryption
set new speed records for this hardware.

To control the three lowest levels of parallelism, we wrote functions to hash or encrypt a buffer-
ful of data in SPU assembly code, and optimized these by hand for speed. Careful scheduling
of instructions minimized data latency, where one instruction waits for the result of a previous
instruction; this involved finding steps in the algorithm that could be done in parallel over a few
clock cycles, for parallelism in a single pipeline (level 2 above).

Another goal was balancing instructions between the two pipelines (level 3), which is compli-
cated by the fact that the instruction sets for the two pipelines are completely disjoint. However,
sometimes it was possible and advantageous to replace an instruction in one pipeline by a dif-
ferent one or even several instructions in the other pipeline to effect the same result with better
parallelism. (The instruction scheduling also needed to satisfy memory alignment constraints
to get dual issue: instructions going to both pipelines at the same clock cycle.)

For all the hashing implementations, we fully unrolled the round loop. For encryption (CTR
and ECB modes), we did not unroll the round loop, but partially unrolled the outer block loop,
to encrypt four blocks together. Other techniques for increasing speed include:

• Instead of conditional jumps, we used the SPU’s predicate operations, allowing execution

3

to progress at full speed without cache misses.
• Dynamic branch hinting allowed cache pre-fetches for looping without penalty.

The SIMD parallelism (level 1 above) varied depending on the algorithm. For AES, the 128-bit
block size matches the 128-bit vector register size of the SPU. The SPU SIMD instructions
made it possible to operate on the 128-bit register as a whole (ShiftRows, AddRoundKey), as
four 32-bit words (MixColumns), or as sixteen bytes (SubBytes table lookups), allowing us to
perform the AES round operations on the whole block at the same time. (We also tried the
standard T-table approach that combines SubBytes, ShiftRows, and MixColumns into simple
table look-ups, but that was less efficient than the SIMD parallelized approach.)

All three hashing algorithms are defined in terms of a sequence of operations on 32-bit words,
which fits nicely with the word size of the SPU. However, all these operations correspond
directly to “even”-pipeline instructions; none are available directly in the “odd”-pipeline. While
this gives unbalanced pipelines, it does mean the “odd” pipeline is free to move words around
or combine them for later SIMD operations. Also, when hashing a single file using SHA-256,
it was possible to replace some of the word rotations (“even” instructions) with quad-word
rotations (“odd” instructions), by keeping all four words of each register identical.

For hashing a single file, opportunities for SIMD acceleration are not so obvious, due to the
sequential nature of the algorithms. The SHA algorithms involve “message scheduling” to
extend the 16-word message block to a new word for each round. There, SIMD can do most of
the message schedule for four rounds at once; the limitation is where results are needed that are
less than four rounds old. In the hashing itself, SIMD was used for certain additions done four
at a time, and some Boolean functions two words at a time (on hash words two or more rounds
old).

A completely different approach to using SIMD is to do four hashes in parallel, for four different
files (messages); we call this the 4-lane approach. (This use of SIMD precludes the others
mentioned above.) When processing multiple files, this is by far the most efficient way. And
this obviously extends to hashing more files using more SPUs (level 4 parallelism), up to 32
files simultaneously on the 8 SPUs of a Cell, for tremendous throughput.

If only a single source is to be hashed, as fast as possible, than that task can be pipelined be-
tween two SPUs (also level 4 parallelism). The message schedule can be preprocessed, since it
depends only on the message data, completely independent of the current hash value. Similarly,
the addition of round constants can be included in the preprocessing. (This approach does not
apply to MD5, since it has no message scheduling, and moreover, we got the rounds to run
in the minimum possible number of clock cycles.) Then the second SPU does all the actual
hashing, relieved of the burden of the message schedule and round constants. This pipelining
increases throughput of SHA-256 by about 16%.

The speed advantages of these two different approaches to parallelizing hashing, either using
two SPUs in hashing one file, or using one SPU to hash four files at once, are shown in Table 3.

4

Datastream SPU Hash

Datastream SPU Hash

Figure 1: Datastreams are hashed independently on multiple SPUs.

Datastream

SPU

Hash

Datastream Hash

Datastream Hash

Datastream Hash

Figure 2: Four separate datastreams are hashed simultaneously on one SPU using SIMD lanes.

2.2 Parallel Processing
The calculation of hash values is a fairly linear approach because the computation of a block of
data depends on the result of the block before it. Regardless, we are able to achieve paralleliza-
tion using the following approaches:

1. Hashing irrelated data streams on separate SPUs as shown in Figure 1. This approach
improves performance linearly as the number of SPUs are utilized. Hashing concurrently
on all eight SPUs of a Cell BE improves performance by eight.

2. Hashing four irrelated data streams concurrently on one SPU as shown in Figure 2 by
using the four SIMD lanes of the 128-bit registers and instructions of the SPU. We use
two approaches for parallel processing.

3. Hashing one data stream and pipelining block processing across two SPUs as shown
in Figure 3. The first SPU creates message digests from input text while the second
SPU concurrently hashes message digests. Although this approach does not provide the
greatest throughput for multiple streams, it does provide the minimum latency for one
data stream.

5

Datastream SPU 1 SPU 2 Hash

Figure 3: Blocks of a datastream are pipelined across two SPUs. In SPU 1, a message digest is produced.
In SPU 2 the message digest is hashed.

2.3 SPU Initialization
The PPU starts one or more SPUs. During initialization, the PPU and each SPU shares with
eachother the EA of their shared data structures, enabling data transfers and synchronization
between processors.

Once initialized, the system is ready to perform hashing jobs.

Initialization steps are as follows:

1. The PPU clears all synchronization variables to ensure that they do not inadvertently
indicate a signal event.

2. The PPU starts SPU(s), providing the EA of the PPU’s shared data space in the argp value
passed to the SPU when the SPU starts running. The SPUs use their assigned slot of this
shared space to signal job completion.

3. The PPU begins to wait to obtain the data spaces of the SPUs. The PPU waits using
the 32-bit hardware mailbox synchronization mechanism. DMA communication could
have been used instead of the mailbox mechanism, but mailbox is simpler to implement,
considering that the synchronization consists of a 32-bit blocking transfer.

4. As each SPU starts, it performs the following initialization sequence:
(a) It clears all synchronization variables to ensure that they do not inadvertently indi-

cate a signal event.
(b) It transmits the LS address of its shared data space to the PPU.
(c) It becomes ready to accept jobs.

For pipelined hashing, which requires two SPUs, the following additional processing is per-
formed before the SPUs are ready to accept jobs:

1. The two SPUs wait for a second mailbox signal providing the EA of the shared data space
of the other SPU.

2. The PPU calculates the EA of the shared data spaces of the SPUs by adding the LS of the
shared data to the EA offset of the LS space for the given SPU.

3. The PPU sends the EA shared data space addresses of SPU0 to SPU1 and of SPU1 to
SPU0.

6

1: while files do
2: read file
3: set job for file
4: signal job to SPU
5: wait for DONE signal from SPU
6: end while
7: send DONE signal to SPU

Figure 4: The PPU repeatedly tasks jobs to the SPU and consumes results until all jobs are done, then
the PPU tasks DONE to terminate.

1: while true do
2: wait for job
3: break if job == DONE
4: process job
5: wait for DONE signal from SPU
6: send calculated hash back to EA
7: end while

Figure 5: The SPU repeatedly accepts and process jobs until the job indicates DONE.

2.4 PPU Task Delegation
The SPUs repeatedly run job requests in a loop until the PPU says to stop. The PPU algorithm
is presented in Figure 4. The SPU algorithm is presented in Figure 5.

For single-SPU jobs, the job request consists of the following:

• job ID
• address of the data
• count of data such as number of blocks or number of files
• address of the returned hash or hashes

For pipelined jobs, the job request is similar, but SPU0 does not receive the address of the
returned hash or hashes, and SPU1 does not receive the address of the data.

2.5 Shared Data Structures
The PPU and each SPU contains shared data structures. Shared data structures are spaces where
other processes may read or write data. We use these shared data structures in two ways:

• For synchronization. A processor signals another processor via a DMA Put operation.
For example, in pipelined hashing, SPU0 signals to SPU1 that data is available by per-
forming a DMA Put into SPU1’s shared data space.

• For data transfer between SPUs. An SPU performs a DMA Get to obtain data from the
shared space of another SPU.
For example, in pipelined hashing, SPU1 issues a DMA Get to pull Schedule Data from
the shared data space of SPU0.

7

Input data and Hash values are not part of shared data space. These values are provided at
runtime during Task Delegation.

2.6 DMA
Data flows between SPUs and global memory via DMA Get and DMA Put operations.

We use DMA for signaling and for data transfer.

DMA is a valuable hardware resource because it is performed by the MMU asynchronously of
the processor. We have the SPU issue a DMA Get, then perform some compute-intensive work.
By the time the compute-intensive work is done, the DMA Get should be complete.

An SPU DMAs with a second SPU by specifying the LS address of its own data and the EA of
the shared data space on the second SPU.

An SPU DMAs with global memory by specifying the LS address of the SPU and the EA of
the global memory.

The PPU DMAs with an SPU by placing the LS address of the SPU and the EA of the global
memory onto the SPU’s MMU.

The DMA bus width is 16 bytes (128 bits), aligned. Although DMA supports transfers of less
than 16 bytes, we never issue them because they introduce complexity and offer no gain. When
performing a transfer of less than 16 bytes, the transfer size must be a power of two and the
source and destination bytes must be aligned. Also, multiple signal channels must not be used
within the same Vector.

The DMA Get operation is faster than the DMA Put operation. Also, tests have shown large in-
termittent pauses (perhaps 1,000 SPU clock ticks) on large DMA Put operations (over 2 KBytes
and most evident on 16 KBytes). For these reasons and for the simple clarity of sticking to a
“pull-only” data model, we always DMA Get data. Recall that for signaling, we always DMA
Put 1 Vector of data.

DMA operations support Barriers and Tag Groups. A Barrier ensures that prior DMA requests
that are a member of a tag group finish before future DMA requests that are a member of the
same tag group begin. Used together, Barriers and tag groups permit synchronized DMA flow.

2.7 Process Synchronization
Synchronization between SPUs and the PPU is performed using DMA Put operations of 128 bit
Vectors. Signaling can be boolean or can contain some additional information. For signaling
availability of a hash job, the PPU sends job information along with a job ID signal when issuing
hash jobs. For example to dispatch a job to hash ten blocks of data via SHA256, the PPU signals
the SHA256 hash job ID, the EA of the start of the data, ten as the number of blocks, and the
EA of where to place the computed hash value. For signaling a boolean indicator that data is

8

1: index i = 0
2: if more data at index 0 then
3: start reading into buffer 0 tag group 0
4: while more data at index i do
5: if more data at index i+1 then
6: start reading into buffer (i+1)%2 tag group (i+1)%2
7: end if
8: wait for DMA tag group index i%2
9: process buffer index i%2

10: index i ++
11: end while
12: send calculated hash to PPU
13: end if
14: send DONE signal to SPU

Figure 6: Double-buffering is used so that the MMU is reading the next buffer while the current bubffer
is being processed.

ready, the SPU sends SET.

2.8 Dataflow Synchronization
When synchronization signaling is predicated on completion of DMA, synchronization actions
may be simplified using the DMA Barrier feature. Specifically, a signal request is placed on the
DMA queue immediately after a data transfer request is enqueued. Both requests are enqueued
in the same tag group and are separated by a Barrier so that the signal goes out immediately
after the data transfer has completed. For example when an SPU has completed calculating a
Hash value, the SPU enques to DMA the Hash value and then the signal, separated by a Barrier.

We also perform dataflow synchronization by blocking on DMA completion when double-
buffering. Specifically, we issue a DMA Get request to read buffer n+1 then begin processing
buffer n. To be sure that buffer n is in, we block for buffer n. Unless there is an unexpected pause
in processing, the SPU never blocks. This is because the time required for DMA is shorter than
the time required for processing. We block on buffer n and not on buffer n+1 by using separate
tag groups for each buffer.

2.9 Double Buffering
We use double-buffering whenever we use DMA Get to obtain data to be processed. If more
data is available, we start reading buffer n+1 before processing buffer n. This flow is shown in
Figure 6.

9

Hash 2.27 GHz
Algorithm CellBE Xeon
SHA256 205.6 101.8
MD5 317.7 371.3
SHA1 413.3 129.8

Table 1: Measured Best Hash Throughput for a Single File in MBytes/Sec

4 Core
Hash 2.27 GHz
Algorithm CellBE Xeon
SHA256 3,398.4 407.2
MD5 10,032.0 1,485.2
SHA1 7,296.0 519.2

Table 2: Aggregate Throughput per chip in MBytes/Sec.

3 Timing Results
Timing results are compared between the CellBE and the Xeon Processors on the IBM blades
that we have.

Here “Aggregate Throughput” is the measure of the rate number of bytes that can be hashed at
one time using multiple files. For example, in the “SHA256” case, a single CellBE can hash 32
different files at one time.

The file used for all measurements was approx. 262M Byes in length. The programs used on
the CellBE were built to run on the Cell’s Synergistic Processing Elements. Different programs
on the cell were used to obtain the “Best Throughput for a Single File” and for the “Aggregate
Throughput”.

The Xeon measurements use the “user time” of the “sha256sum”, “md5sum” and “sha1sum”
programs. We did not write special programs. Various people have reported rates of 15-27
cycles/byte for sha256. This is consistent with our speed measurements.

The aggregate is measured on the CellBE but is only Projected on the Xeon since we were
unable to get all 8 cores to run simultaneously without interference. One or more are used to
support the OS and process tasks. We think all the measurements only include a limited portion
of the file system access. We did not use the “openssl” versions on the Xeon. A quick test
showed that the “openssl” versions of MD4 and SHA1 are marginally faster than the versions
we tested.

10

Hashing Speed (Gb/s)
implementation hash type
who: SPU, file MD5 SHA-1 SHA-256
IBM: 1 , 1 2.448 2.116 0.854
ours: 1 , 1 2.544 2.604 1.392
ours: 2 , 1 N/A 3.352 1.653
ours: 1 , 4 10.116 7.335 3.403

Encryption Speed (Gb/s, 1 SPU)
keysize

AES mode 128 192 256
our CTR 2.071 1.722 1.474
IBM’s ECB (encr) 2.059 1.710 1.462
our ECB (encr) 2.092 1.737 1.484
IBM’s CBC (encr) 0.795 0.664 0.570
our CBC (encr) 1.191 0.989 0.846

Table 3: Our measured speeds for hashing and AES encryption, compared with IBM’s published
results[2]. Our hashing results show speedups from two different types of parallelism: using 2 SPUs
for a single file, or hashing four files on one SPU.

4 AES on the SPU
The implementation of AES GCM on the SPU consists of an AES implementation, a GCM
implementation, and a data pump state machine that schedules data transfer from main mem-
ory to SDRAM, performs encryption, and then schedules transfer back from SDRAM to main
memory.

While our main interest is in the Counter (CTR) mode of AES, as part of the Galois Counter
Mode, we also implemented the Electronic CodeBook (ECB) mode and Cipher Block Chaining
(CBC) feedback mode for comparison; the data throughput speeds for a single SPU (encryption
only) are summarized in Table 3. Note that our speeds for ECB are slightly faster than IBM’s,
and our speeds for CBC are significantly better.

11

Data
Input

SPU1

SPU2

SPU3 Data
Output

Figure 7: Our test architecture for failsafe AES encryption.

Data
Input

SPU1

SPU2

Data
Output

Figure 8: An alternative architecture for failsafe AES encryption. This architecture provides additional
reliability against incorrect operation but does not place hard limits between the movement of unen-
crypted data through the SPU to the output buffer.

5 Parallel Architectures with AES
In our work with AES Encryption, we developed two approaches for utilizing on-chip paral-
lelism provided by multiple SPUs for detecting Single Event Upsets (SEU). Our motivation for
detecting SEUs is to ensure that unencrypted data never flows to the output buffer.

Figure 7 shows our first proposal for creating a network for SPUs to improve reliability. Data is
transferred from main memory to both SPU 1 and SPU 2. Encrypted data is sent from the two
SPUs to SPU 3 where it is compared and, if validated, sent to the output buffer. The advantage
of this approach is that no SEU in SPU1, SPU2 or SPU3 can result in cleartext data being copied
to the output buffer. The disadvantage is that a SEU in SPU3 can nevertheless result in incorrect
data being output, and there is an equal chance of a failure in SPU1, SPU2 and SPU3.

An alternative architecture is shown in Figure 8.

12

6 Conclusion
In this report we have shown how the CellBE architecture can deliver impressive performance
in hashing and encryption through the use of custom-written VLIW assembly code and through
careful attention to buffer management. Although the Cell has a reputation as being hard to
program, we did not find this to be the case. Certainly the Cell had a learning curve, but we
were able to master the complexities of this architecture in a relatively short amount of time. It
is unfortunate that IBM halted development on the Cell architecture, as it clearly represented a
high-performance, cost-effective computing platform.

13

A Introduction
We provide two optimizations of high speed SHA-256[5], MD5[6], and SHA-1[5] hashing on
the Cell BE:

1. Maximum throughput, achieved by hashing four separate datasets concurrently in lanes
on one or more SPUs, and

2. Maximum single-file throughput with minimal latency, where multiple SPUs participate
in calculating various hashes using pipelined processing.

Six hash outputs are available: SHA-256, MD5, and SHA-1 file hashes and SHA-256, MD5,
and SHA-1 4 KByte Sector hashes of files.

Both programs run from the shell and use SPU resources.

This document describes the following:

• This introduction to hashing.
• An overview of hash files and hash file hashing programs.
• A description of the NPS Cell PPU Hash Utilities.
• A description of the NPS Cell SPU Hash Utilities.
• Details of the hash files application.
• Details of the hash file application.

14

B Application Overview
B.1 hash files
Application hash files provides maximum total throughput using lane processing. Lane
processing hashes four separate datasets in four lanes concurrently on an SPU. Multiple SPUs
may be active hashing files simultaneously. Application hash files requires the following
hashing utilities:

• From NPS Cell PPU Hash Utilities:
– Lane context modules.
– File context modules.
– Data context modules.

• From NPS Cell SPU Hash Utilities:
– Modules that hash files and Sectors in lanes, and, for finalization, modules that

perform a single optimized hash on one SPU.

B.2 hash file
Application hash file provides maximum single-file throughput by pipelining hashing tasks
across multiple SPUs. SHA-256 and SHA-1 hashing is split into parts and is distributed across
multiple pipelining SPUs. MD5 and Sector hashing tasks are split across multiple SPUs. Ap-
plication hash file requires the following hashing utilities:

• From NPS Cell PPU Hash Utilities:
– Pipeline context modules.
– File context modules.
– Data context modules.

• From NPS Cell SPU Hash Utilities:
– Modules that hash SHA-256 and SHA-1 in pipelined fashion, modules that hash

MD5 as a single thread, and modules that hash sectors in lanes.

15

C NPS Cell PPU Hash Utilities
PPU hash utilities provide interfaces for hashing and interfaces for managing files and data to
be hashed. The NPS Cell PPU Hash Utilities are described in MAN pages.

PPU hash utilities are defined in the following interface files:

• lanes hash.h defines interfaces and type declarations for hashing with maximum
throughput on SPUs using lane processing.

• pipe hash.h defines interfaces and type declarations for hashing with maximum single-
file throughput on two SPUs using pipelined processing.

• single md5 hash.h defines interfaces and type declarations for hashing MD5 with
maximum single-file throughput on one SPU.

• shared context.h defines general interfaces, type declarations, and constants for
supporting data and file management involved in hashing.

C.1 lanes hash.h Lane Hash Interfaces
These interfaces provide SPU hashing resources which use lane processing to achieve maximum
total throughput.

C.1.1 Lane Interfaces
• lanes open spu() opens an SPU resource for hashing lanes. Specifically: memory is

allocated for the lanes SPU context, the SPE context is created, the lanes spu program
is loaded, the SPU thread is started, and the SPU’s local store address ls lanes shared data
is obtained from the started SPU so that the PPU can communicate to the SPU.

• lanes close spu(lanes spu ctx ptr) closes an SPU resource for hashing lanes.
Specifically: the SPU is signalled to stop, the SPU thread is closed, the SPE context is
closed, and memory for the lanes SPU context is deallocated.

• lanes hash(lanes spu ctx ptr, data ctx ptr1, data ctx ptr2, data ctx ptr3,
data ctx ptr4, hash flags) hashes four datasets residing in four data contexts
using the requested hash algorithms.

• lanes poll spu(lanes spu ctx ptr) identifies when hashing is done and tran-
sitions data state when hashing is done.

C.1.2 PPU to SPU Signal Vector
The PPU signals to the SPU that a hashing job is ready using the following signal Vector:

typedef struct lanes_ppu_to_spu_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
volatile unsigned int hash_flags;
unsigned int dummy[2]; // alignment to 16-bytes for block DMA transfer

} lanes_ppu_to_spu_t;

16

• Field signal signals the SPU that a hash job is available. The PPU sends either
SPU SIGNAL to indicate that a job is available or SPU DONE to indicate that there
are no more jobs and that the SPU should exit. The SPU resets its own signal value to
SPU NO SIGNAL to indicate that the job has been serviced.

• Field hash flags provides hash job bit fields for SHA-256, MD5, and SHA-1 file and
Sector hashes.

• Field dummy[2] fills out the signal Vector to 16 bytes for a full 16-byte Vector DMA
transfer.

C.1.3 SPU to PPU signal Vector
When the SPU has completed hash processing, it signals the PPU that the hashing job is com-
pleted using the SPU to PPU signal Vector.

typedef struct lanes_spu_to_ppu_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
volatile unsigned int tick_start; // timer
volatile unsigned int tick_finish; // timer
unsigned int dummy[1]; // alignment to 16-bytes for block DMA transfer

} lanes_spu_to_ppu_t;

• Field signal signals the PPU that a hash job has completed. The SPU sends SPU AVAILABLE
to indicate that it is ready for a hash job. The PPU presets its own signal value to
SPU NOT AVAILABLE to await the upcoming completion signal from the SPU.

• If the SPU code is compiled with the TIMING cflag switch set, then the tick start
and tick finish fields will contain SPU tick start and stop timing information.

• Field dummy[1] fills out the signal Vector to 16 bytes for a full 16-byte Vector DMA
transfer.

C.1.4 PPU Shared Data Structure
The PPU reserves the following data space for communicating with the SPU. The SPU receives
a pointer to this structure when it is initialized so that it can read to and write from it.

typedef struct ppu_lanes_shared_data_t {
lanes_ppu_to_spu_t signal_to_spu;
lanes_spu_to_ppu_t signal_to_ppu;
data_ctx_ptr_t data_ctx_ptr[4] __attribute__ ((aligned (16)));

} ppu_lanes_shared_data_t;

• Field signal to spu contains the Vector for signaling to the SPU.
• Field signal to ppu contains the Vector for receiving signaling from the PPU.
• Field data ctx ptr[4] contains the four pointers to the four data contexts containing

data to be hashed. The SPU reads these four pointers.

17

C.1.5 SPU Shared Data Structure
The SPU Shared Data Structure is the SPU’s data space for communicating with the PPU. When
the SPU initializes, it sends a pointer to this structure to the PPU so that the PPU knows where
to signal to the SPU.

typedef struct spu_lanes_shared_data_t {
lanes_ppu_to_spu_t signal_to_spu;
lanes_spu_to_ppu_t signal_to_ppu;

} spu_lanes_shared_data_t;

• Field signal to spu contains the Vector for receiving signaling from the PPU.
• Field signal to ppu contains the Vector for signaling to the PPU.

C.1.6 Lanes SPU Context Structure
The Lanes SPU Context tracks the SPU and the process thread that is associated with it, and
holds information for communicating between the PPU and SPU.

typedef struct lanes_spu_ctx_t {
spe_context_ptr_t spe_ctx; // pointer to SPU’s SPE context
pthread_t spu_thread; // pthread
unsigned int spu_index; // used for SPU tracking in printf
ppu_lanes_shared_data_t ppu_shared_data; // shareable data on PPU
spu_lanes_shared_data_t *ls_spu_shared_data; // LS of shareable data on SPU

} lanes_spu_ctx_t;

• Field spe ctx points to the SPE context which identifies the associated SPU.
• Field spu thread identifies the PPU thread under which the associated SPU runs.
• Field spu index indexes the SPU for diagnostics purposes and is otherwise unused.
• Field ppu shared data contains the shared data structure on the PPU side that is

associated with the lanes SPU. Data within this structure is shared with the SPU.
• Field ls spu shared data contains the local store address of the shared data struc-

ture on the SPU side that is associated with the lanes SPU. The PPU uses this pointer to
communicate to the SPU.

C.2 pipe hash.h Pipelined Hash Interfaces
These interfaces provide SPU hashing resources which use pipelined processing of SHA-256
or SHA-1 to achieve maximum single-file throughput.

C.2.1 Pipeline Interfaces
• pipe open spu() opens an SPU resource for hashing SHA-256 or SHA-1 using pipelined

processing across two SPUs. Specifically: memory is allocated for the pipeline SPU con-
text, SPE contexts are created, SPU programs pipe1 spu and pipe2 spu are loaded,
the two SPU threads are started, the SPU’s local store addresses are obtained from the

18

started SPU so that the PPU can communicate to the SPU, and the SPU’s local store ad-
dresses are exchanged between the SPUs so that the SPUs can communicate with each
other.

• pipe close spu(pipe spu ctx ptr) closes an SPU resource used for pipelined
hashing. Specifically: the SPUs are signalled to stop, the SPU threads are closed, the SPE
contexts are closed, and memory for the pipeline SPU contexts are deallocated.

• pipe hash(pipe spu ctx ptr, data ctx ptr, hash flags) hashes a dataset
using the requested SHA-256 or SHA-1 algorithm.

• pipe poll spu(pipe spu ctx ptr) identifies when hashing is done and transi-
tions data state when hashing is done.

C.2.2 PPU to Pipe Signal Vectors
The PPU uses the following signal Vector to signal both pipeline SPUs that a hashing job is
ready:

typedef struct ppu_to_pipe_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
volatile unsigned int hash_flags;
volatile data_ctx_ptr_t data_ctx_ptr;
unsigned int dummy[1]; // alignment to 16-bytes for block DMA transfer

} ppu_to_pipe_t;

• Field signal signals the SPU that a hash job is available. The PPU sends either
SPU SIGNAL to indicate that a job is available or SPU DONE to indicate that there
are no more jobs and that the SPU should exit. The SPU resets its own signal value to
SPU NO SIGNAL to indicate that the job has been serviced.

• Field hash flags provides a hash job code for SHA-256 or SHA-1, and is FILE SHA256
or FILE SHA1.

• Field data ctx ptr points to the data context for the data being hashed.
• Field dummy[1] fills out the signal Vector to 16 bytes to allow a full 16-byte Vector

DMA transfer.

C.2.3 SPU to PPU signal Vector
When the SPU has completed hash processing, it signals the PPU that the hashing job is com-
pleted using the SPU to PPU signal Vector. Both SPUs provide this signal when they have
completed their respective hashing role, specifically, when pipe1 finishes providing message
schedule data to pipe2, and when pipe2 finishes hashing message schedule data.

typedef struct pipe_to_ppu_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
volatile unsigned int tick_start; // timer
volatile unsigned int tick_finish; // timer

19

unsigned int dummy[1]; // alignment to 16-bytes for block DMA transfer
} pipe_to_ppu_t;

• Field signal signals the PPU that a hash job has completed. The SPU sends SPU AVAILABLE
to indicate that it is ready for a hash job. The PPU presets its own signal value to
SPU NOT AVAILABLE to await the upcoming completion signal from the SPU.

• If the SPU code is compiled with the TIMING cflag switch set, then the tick start
and tick finish fields will contain SPU tick start and stop timing information.

• Field dummy[1] fills out the signal Vector to 16 bytes for a full 16-byte Vector DMA
transfer.

C.2.4 SPU to SPU signal Vector
The pipe1 SPU signals the pipe2 SPU when the pipe1 SPU has completed preparing schedule
data that is available for the pipe2 SPU to consume. Two signal channels are used because two
buffers of data are prepared. By using double-buffering, one buffer may be consumed while the
other is being prepared.

The pipe2 SPU signals the pipe1 SPU when it has completed pulling schedule data from the
pipe1 SPU. When the pipe1 SPU receives this signal, it is free to replace the buffer with the
next bufferfull of schedule data. Two signal channels are used because schedule data is double-
buffered.

The SPU to SPU signal data structure follows.

typedef struct pipe_spu_to_spu_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
unsigned int dummy[3]; // alignment to 16-bytes for block DMA transfer

} pipe_spu_to_spu_t;

• Field signal signals the other SPU that the resource is available (on pipe1) or has been
consumed (by pipe2).

• Field dummy[3] fills out the signal Vector to 16 bytes for a full 16-byte Vector DMA
transfer.

The SPU to SPU signal values follow:

// signal between SPUs
#define CLEARED 0
#define SET 1

• SET indicates an active signal.
• CLEARED is written on the local SPU to clear the SET signal sent by the other SPU.

20

C.2.5 PPU Shared Data Structure
The PPU reserves the following data space for communicating with the pipe1 and pipe2 SPUs.
The SPU receives a pointer to the two SPU shared structures when it is initialized so that it can
read to and write from them.

typedef struct ppu_pipe_shared_data_t {
ppu_to_pipe_t ppu_to_pipe;
pipe_to_ppu_t pipe1_to_ppu;
pipe_to_ppu_t pipe2_to_ppu;

} ppu_pipe_shared_data_t;

• Field ppu to pipe contains the Vector for signaling to the SPUs.
• Field pipe1 to ppu contains the Vector for receiving signaling from the pipe1 SPU.
• Field pipe2 to ppu contains the Vector for receiving signaling from the pipe2 SPU.

C.2.6 Pipe1 Shared Data Structure
The pipe1 Shared Data Structure is pipeline 1’s SPU data space for communicating with the
PPU and with the other SPU. When the SPU initializes, it shares a pointer to this structure to
the PPU and the other SPU so that they know where to signal to it.

typedef struct spu_pipe1_shared_data_t {
SPU_PIPE2_SHARED_DATA_T *ea_pipe2_shared_data;
ppu_to_pipe_t ppu_to_pipe1;
pipe_to_ppu_t pipe1_to_ppu;
pipe_spu_to_spu_t pipe1_to_pipe2;
pipe_spu_to_spu_t pipe2_to_pipe1[2];
unsigned char data[2][BUFFER_SIZE] __attribute__ ((aligned (16)));
unsigned char schedule_data[2][SCHEDULE_BUFFER_SIZE] __attribute__ ((aligned (16)));

} spu_pipe1_shared_data_t;

• Field ea pipe2 shared data contains the Effective Address (EA) pointer to the
pipe2 shared data structure so that the pipe1 SPU can DMA Put signaling to pipe2.

• Field ppu to pipe1 contains the signaling Vector the PPU uses to signal to pipe1.
• Field pipe1 to pipe2 contains the signal Vector pipe1 uses to communicate to pipe2,

and is constant.
• Field pipe2 to pipe1[2] contains the two signal Vectors pipe2 uses to communicate

to pipe1.
• Field data[2][BUFFER SIZE] contains data to be hashed, and is double-buffered.

Pipe1 uses DMA Get to prefetch this data. Pipe1 does not preprocess this data into sched-
ule data until cleared by a signal from pipe2 to do so.

• Field schedule data[2][SCHEDULE BUFFER SIZE] contains double-buffered sched-
ule data. Pipe2 uses DMA Get to read this schedule data after pipe1 signals that this
schedule data is available.

21

C.2.7 Pipe2 Shared Data Structure
The pipe2 Shared Data Structure is pipeline 2’s SPU data space for communicating with the
PPU and with the other SPU. When the SPU initializes, it shares a pointer to this structure to
the PPU and the other SPU so that they know where to signal to it.

typedef struct spu_pipe2_shared_data_t {
SPU_PIPE1_SHARED_DATA_T *ea_pipe1_shared_data;
ppu_to_pipe_t ppu_to_pipe2;
pipe_to_ppu_t pipe2_to_ppu;
pipe_spu_to_spu_t pipe2_to_pipe1;
pipe_spu_to_spu_t pipe1_to_pipe2[2];
sha256_hash_t sha256_hash __attribute__ ((aligned (16)));
sha1_hash_t sha1_hash __attribute__ ((aligned (16)));
unsigned char schedule_data[2][SCHEDULE_BUFFER_SIZE] __attribute__ ((aligned (16)));

} spu_pipe2_shared_data_t;

• Field ea pipe1 shared data contains the Effective Address (EA) pointer to the
pipe1 shared data structure so that the pipe2 SPU can DMA Put signaling to pipe1.

• Field ppu to pipe2 contains the signaling Vector the PPU uses to signal to pipe2.
• Field pipe2 to pipe1 contains the signal Vector pipe2 uses to communicate to pipe1,

and is constant.
• Field pipe1 to pipe2[2] contains the two signal Vectors pipe1 uses to communicate

to pipe2.
• Field schedule data[2][SCHEDULE BUFFER SIZE] contains double-buffered sched-

ule data. Pipe2 uses DMA Get to read this schedule data from pipe1 after pipe1 signals
that this schedule data is available.

C.2.8 Pipe SPU Context Structure
The Pipe SPU Context tracks the SPUs and process threads that are associated with them, and
holds information for communicating between the PPU and SPU.

typedef struct pipe_spu_ctx_t {
spe_context_ptr_t spe_pipe1_ctx; // pointer to pipe1 SPU’s SPE context
spe_context_ptr_t spe_pipe2_ctx; // pointer to pipe2 SPU’s SPE context
pthread_t spu_pipe1_thread; // pthread
pthread_t spu_pipe2_thread; // pthread
ppu_pipe_shared_data_t ppu_shared_data; // shareable data on PPU
spu_pipe1_shared_data_t *ls_pipe1_shared_data; // LS of shareable data on pipe1 SPU
spu_pipe2_shared_data_t *ls_pipe2_shared_data; // LS of shareable data on pipe2 SPU

} pipe_spu_ctx_t;

• Field spe pipe1 ctx points to the pipe1 SPE context.
• Field spe pipe2 ctx points to the pipe2 SPE context.

22

• Field spu pipe1 thread identifies the PPU thread under which the pipe1 SPU runs.
• Field spu pipe2 thread identifies the PPU thread under which the pipe2 SPU runs.
• Field ppu shared data contains the shared data structure on the PPU side that is

associated with the pipeline SPUs.
• Field ls pipe1 shared data contains the local store address of the pipe1 SPU shared

data structure.
• Field ls pipe2 shared data contains the local store address of the pipe2 SPU shared

data structure. The PPU uses this pointer to communicate to the SPU.

C.3 single md5 hash.h Lane Hash Interfaces
These interfaces provide SPU hashing resources which use lane processing to achieve maximum
total throughput.

C.3.1 Single MD5 Hash Interfaces
• md5 open spu() opens an SPU resource for hashing MD5. Specifically: memory is al-

located for the SPU context, the SPE context is created, the md5 spu program is loaded,
the SPU thread is started, and the SPU’s local store address ls spu shared data is
obtained from the started SPU so that the PPU can communicate to the SPU.

• md5 close spu(md5 spu ctx ptr) closes an SPU resource for MD5 hashing. Specif-
ically: the SPU is signalled to stop, the SPU thread is closed, the SPE context is closed,
and memory for the SPU context is deallocated.

• md5 hash(md5 spu ctx ptr, data ctx ptr) performs MD5 hashing.
• md5 poll spu(md5 spu ctx ptr) identifies when hashing is done and transitions

data state when hashing is done.

C.3.2 PPU to SPU Signal Vector
The PPU signals to the SPU that a hashing job is ready using the following signal Vector:

typedef struct md5_ppu_to_spu_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
volatile data_ctx_ptr_t data_ctx_ptr;
unsigned int dummy[2]; // alignment to 16-bytes for block DMA transfer

} md5_ppu_to_spu_t;

• Field signal signals the SPU that a hash job is available. The PPU sends either
SPU SIGNAL to indicate that a job is available or SPU DONE to indicate that there
are no more jobs and that the SPU should exit. The SPU resets its own signal value to
SPU NO SIGNAL to indicate that the job has been serviced.

• Field data ctx ptr points to the data context for the data being hashed.
• Field dummy[2] fills out the signal Vector to 16 bytes for a full 16-byte Vector DMA

transfer.

23

C.3.3 SPU to PPU signal Vector
When the SPU has completed hash processing, it signals the PPU that the hashing job is com-
pleted using the SPU to PPU signal Vector.

typedef struct md5_spu_to_ppu_t {
volatile unsigned int signal __attribute__ ((aligned (16)));
volatile unsigned int tick_start; // timer
volatile unsigned int tick_finish; // timer
unsigned int dummy[1]; // alignment to 16-bytes for block DMA transfer

} md5_spu_to_ppu_t;

• Field signal signals the PPU that a hash job has completed. The SPU sends SPU AVAILABLE
to indicate that it is ready for a hash job. The PPU presets its own signal value to
SPU NOT AVAILABLE to await the upcoming completion signal from the SPU.

• If the SPU code is compiled with the TIMING cflag switch set, then the tick start
and tick finish fields will contain SPU tick start and stop timing information.

• Field dummy[1] fills out the signal Vector to 16 bytes for a full 16-byte Vector DMA
transfer.

C.3.4 PPU Shared Data Structure
The PPU reserves the following data space for communicating with the SPU. The SPU receives
a pointer to this structure when it is initialized so that it can read to and write from it.

typedef struct ppu_md5_shared_data_t {
md5_ppu_to_spu_t signal_to_spu;
md5_spu_to_ppu_t signal_to_ppu;

} ppu_md5_shared_data_t;

• Field signal to spu contains the Vector for signaling to the SPU.
• Field signal to ppu contains the Vector for receiving signaling from the PPU.

C.3.5 SPU Shared Data Structure
The SPU Shared Data Structure is the SPU’s data space for communicating with the PPU. When
the SPU initializes, it sends a pointer to this structure to the PPU so that the PPU knows where
to signal to the SPU.

typedef struct spu_md5_shared_data_t {
md5_ppu_to_spu_t signal_to_spu;
md5_spu_to_ppu_t signal_to_ppu;
md5_hash_t md5_hash __attribute__ ((aligned (16)));
unsigned char data[2][BUFFER_SIZE] __attribute__ ((aligned (16)));

} spu_md5_shared_data_t;

24

• Field signal to spu contains the Vector for receiving signaling from the PPU.
• Field signal to ppu contains the Vector for signaling to the PPU.
• Field md5 hash holds the hash value being hashed. It is loaded from the data context

space via DMA Get before hashing starts and is used while computing intermediate hash
values. It is loaded back to the data context space via DMA Put after hashing is updated.

• Field data[2][BUFFER SIZE] contains data to be hashed, and is double-buffered.

C.3.6 MD5 SPU Context Structure
The MD5 SPU Context tracks the SPU and the process thread that is associated with it, and
holds information for communicating between the PPU and SPU.

typedef struct md5_spu_ctx_t {
spe_context_ptr_t spe_ctx; // pointer to SPU’s SPE context
pthread_t spu_thread; // pthread
ppu_md5_shared_data_t ppu_shared_data; // shareable data on PPU
spu_md5_shared_data_t *ls_spu_shared_data; // LS of shareable data on SPU

} md5_spu_ctx_t;

• Field spe ctx points to the SPE context which identifies the associated SPU.
• Field spu thread identifies the PPU thread under which the associated SPU runs.
• Field ppu shared data contains the shared data structure on the PPU side that is

associated with the SPU. Data within this structure is shared with the SPU.
• Field ls spu shared data contains the local store address of the shared data struc-

ture on the SPU side that is associated with the SPU. The PPU uses this pointer to com-
municate to the SPU.

C.4 shared context.h Shared Interfaces
These interfaces manage the opening, reading, and closing of files being hashed. Actual data
read is maintained by data interfaces.

C.4.1 File Interfaces
• file open(filename) creates a file context and opens a file for reading. Initial

count values and starting file hash values are set.
• file read sectors(file ctx ptr, data ctx ptr) reads file data from the

file identified by the file context into space in the data context. The number of bytes read
and the running number of bytes read are set. The data context must be available for this
operation to work. Specifically, the data context state must be DATA EMPTY.

• file close(file ctx ptr) closes a file that has been opened for reading and deal-
locates memory assigned to the file context. An error is returned if a data context is still
associated with the file.

25

C.4.2 Data Interfaces
These interfaces provide data management support. Data is read into data resources using file
interfaces and is hashed using SPU hashing interfaces.

• data alloc(sectors per read) allocates a data context for reading files and hash-
ing data, sets read values to zero, and sets the data context state to DATA EMPTY.

• data free(data ctx ptr) deallocates a data context and associated memory space.
An error is returned if a data context is still active.

• data clear hashed state(data ctx ptr) disassociates any file context from
the data context, sets read values to zero, and sets the data context state to DATA EMPTY.
An error is returned if the data context is still active, which is the case when the data
context state is DATA READ or DATA HASHING.

C.4.3 Hash sizes and Types
These declarations define the fundamental SHA-256, MD5, and SHA-1 hash types.

// hash constants
#define SHA256_HASH_SIZE 32 // 256 bits
#define MD5_HASH_SIZE 16 // 128 bits
#define SHA1_HASH_SIZE 32 // 160 bits

// types for hashes
typedef unsigned char sha256_hash_t[SHA256_HASH_SIZE];
typedef unsigned char md5_hash_t[MD5_HASH_SIZE];
typedef unsigned char sha1_hash_t[SHA1_HASH_SIZE];
typedef sha256_hash_t *sha256_hash_ptr_t;
typedef md5_hash_t *md5_hash_ptr_t;
typedef sha1_hash_t *sha1_hash_ptr_t;

C.4.4 Hash Flags
These declarations identify the six hash algorithms that may be selected.

// hash flags
#define FILE_SHA256 0x01
#define FILE_MD5 0x02
#define FILE_SHA1 0x04
#define SECTORS_SHA256 0x08
#define SECTORS_MD5 0x10
#define SECTORS_SHA1 0x20

26

C.4.5 Data Context States
These declarations define the four states that a data context may be in. File, data, and hash
interfaces will fail if their associated data contexts are in incorrect states. Also, calculated hash
values are only valid when data contexts are in their correct states.

// data context state
#define DATA_EMPTY 0
#define DATA_READ 1
#define DATA_HASHING 2
#define DATA_HASHED 3

• DATA EMPTY indicates that the data context has no data, has no file attached to it, and
has no calculated hash values. It is ready for a file read operation via file read sectors.
A hashing operation may be performed on the empty data, but no action will take place.

• DATA READ indicates that data has been read and a file has been attached to it, but the
data not been hashed.

• DATA HASHING indicates that the data is being hashed via a hashing operation such as
lanes hash. A poll operation returning completion status is required for transitioning
the data context state from DATA HASHING to DATA HASHED.

• DATA HASHED indicates that data has been hashed and hash values are available. Sector
hashes are available. If the data context is at EOF, file hashes are also available. Issue
data clear hashed state to release the file attached to it and to transition the data
context state from DATA HASHED back to DATA EMPTY. The file cannot be closed via
file close until it is released.

C.4.6 Data Context Type Declarations
A data context holds data read from a file, tracks the file the data came from, and provides space
for holding Sector hashes.

When a data context is created, memory space is allocated for it that is the size of data ctx ptr
plus the size of the data and Sector hash space required based on the number of sectors that it
can hold.

// data types
typedef struct data_ctx_t
{

unsigned int sectors_per_read; // private
unsigned long long num_previous_bytes; // private
unsigned int num_current_bytes; // private
unsigned int eof; // public
unsigned int data_ctx_state; // public
file_ctx_ptr_t file_ctx_ptr; // private
unsigned char *data; // private malloc

27

sha256_hash_t *sha256_sector_hash_ptr; // public malloc
md5_hash_t *md5_sector_hash_ptr; // public malloc
sha1_hash_t *sha1_sector_hash_ptr; // public malloc
unsigned char heap[0] __attribute__ ((aligned (16))); // start of heap space

} data_ctx_t;

typedef data_ctx_t *data_ctx_ptr_t;

• Field sectors per read defines the maximum number of sectors that may be read
during a file read sectors file read operation. This value is established during the
data alloc call. The amount of data and Sector hash space reserved is based on this
value.

• Field num previous bytes tracks how much data has been read before the current
read, and is used for tracking Sector numbers and determining the EOF condition.

• Field num current bytes identifies how many bytes are read in the current read, and
is used to determine the number of Sectors read, the number of blocks read, and the EOF
condition.

• Field eof indicates that there are no more bytes to process. Note that this is different
from field eof in file ctx t which may reach EOF while more than one data context
may be available containing data from the same file.

• Field data context state contains the state of the data context, which is one of
DATA EMPTY, DATA READ, DATA HASHING, or DATA HASHED.

• Field file ctx ptr points to the file context from which the last file read was made,
or is NULL if the file context has been released using data clear hashed state.

• Field data points to the start of the data space to be read using file read sectors.
Field data starts at the address of field heap and is 16-byte aligned for DMA transfers.
Its size is determined by the number of sectors per read, specifically sectors per read

* 4096.
• Fields sha256 sector hash ptr, md5 sector hash ptr, and sha1 sector hash ptr

point to their respective arrays of SHA-256, MD5, and SHA-1 Sector hashes. They im-
mediately follow the allocation for field data. Their size is determined by the number
of sectors per read, field sectors per read.

C.4.7 File Context Type Declarations
A file context contains information regarding an opened file including a pointer to its name, its
file size, how many bytes have been read so far, and the file hash values being calculated for it.

When a file context is created, memory space is allocated for it that is the size of file ctx t.

// file types
typedef struct file_hash_t
{

sha256_hash_t sha256_hash __attribute__ ((aligned (16))); // private

28

md5_hash_t md5_hash; // private
sha1_hash_t sha1_hash; // private

} file_hash_t;

typedef struct file_ctx_t
{

char *filename; // public
int file_descriptor; // private
off_t file_size; // private
off_t total_bytes_read; // private
int eof; // public
unsigned int data_ctx_attach_count; // private
file_hash_t file_hash; // public

} file_ctx_t;

typedef file_ctx_t *file_ctx_ptr_t;

• Field filename points to the name of the opened file.
• Field file descriptor points to the opened file.
• Field file size indicates the size of the file.
• Field total bytes read indicates the number of bytes read so far.
• Field eof indicates that there are no more bytes to read.
• Field data ctx attach count tracks how many file reads are active.
• Field file hash contains the SHA-256, MD5, and SHA-1 file hashes. File hash values

are transient or contain running hash values until 1) the associated data context state
reaches DATA HASHED and 2) the associated data has reached EOF.

29

D NPS Cell SPU Hash Utilities Overview
These utilities provide optimized hashing algorithms written in assembly and run on SPUs.
SHA-256, MD5, and SHA-1 hashing algorithms are provided. Optimizations for maximum
total throughput, maximum single-file throughput, and Sector hashing are provided.

The NPS Cell SPE Hash Utilities are described in MAN pages available in our source tree at
src/hash algorithms/cell hash man/spu hash.

D.1 Maximum Total Throughput
These interfaces provide maximum total throughput by hashing four separate datasets in lanes.
These interfaces should be used when multiple files may be hashed concurrently.

• sha256 hash 4lanes
• md5 hash 4lanes
• sha1 hash 4lanes

D.2 Maximum Single-file Throughput, Pipelined
These interfaces provide maximum single-file throughput by hashing using two pipelined SPUs.
SPU pipeline 1 prepares a 16 KByte precomputation table from 4 KBytes of input, while SPU
pipeline 2 hashes the 16 KBytes of precomputation data. Pipelined processing is available for
SHA-256 and SHA-1 and is not available for MD5.

• sha256 hash pipe1
• sha256 hash pipe2
• sha1 hash pipe1
• sha1 hash pipe2

D.3 Maximum Single-file Throughput, Single-SPU
These interfaces provide maximum single-file throughput by hashing a single stream on a single
SPU. For SHA-256 and SHA-1 processing, use Maximum Single-file Throughput, Pipelined in-
terfaces, if possible, and use Maximum Single-file Throughput, Single-SPU interfaces when fi-
nalizing the last block. For MD5 processing, use the Maximum Single-file Throughput, Single-
SPU interface to hash the entire single file.

• sha256 hash
• md5 hash
• sha1 hash

D.4 Sector Hashing
These interfaces provide maximum Sector hashing throughput by hashing four Sectors concur-
rently, one in each lane. These interfaces combine hash initialization, hashing, and finalization
within the same assembly call for improved performance.

30

• sha256 hash 4sectors
• md5 hash 4sectors
• sha1 hash 4sectors

31

E Application hash files for Maximum Throughput
We provide maximum hashing throughput via program hash files.

E.1 hash files User Interface
Usage:

hash_files -l <filename> -a <hash algorithm> [-s]
[-r <num_4K_sectors>] [-n <number of SPUs>]

-l <filename> specifies the filename of a file containing a list of filenames to hash, one
filename per line, no spaces, each line terminated by a carriage return. This selection is
required.

-a <algorithm> identifies the hashing algorithm(s) to use. Options are sha256, md5,
sha1, and all for all three.

-s specifies to also perform Sector hashing in addition to file hashing.

-r <num 4K sectors> identifies the number of sectors to read per file read. A value of
two may be optimal for many small files, and 16 may be optimal for mixed small and large
files. 1024 may be optimal for many large files. Large values may cause page caching.

-n <number of SPUs> identifies the number of SPUs to use. We recommend using all
SPUs or else enough SPUs to keep the hashing process I/O bound rather than processing
bound. I/O performance is based on the hardware and file systems providing the files.

E.2 Output
Output is sent to stdout and consists of multiple file and Sector hash values separated by
carriage returns. File hash output is as follows:

<filename> <algorithm> <hash value>

Sector hash output is as follows:

<filename> Sector <sector number> <algorithm> <hash value>

Text <filename> is the path of the filename obtained from the file list file, <algorithm>
is one of SHA-256, MD5, or SHA-1, and <hash value> consists of sets of eight-digit hex-
adecimal values separated by single space characters. For Sector hashes, the word Sector, a
space, and the integer Sector number starting at zero are also provided.

An example MD5 file and Sector hash for 14 KByte file myfile follows:

32

myfile Sector 0 MD5 14c43752 b777ad9c 107fc589 b6faa235
myfile Sector 1 MD5 1390b353 cba445e0 f033d799 626c975a
myfile Sector 2 MD5 456bed94 e3b5cb37 21c20109 a98e599a
myfile MD5 bbc725c7 eaabd331 252dde6b 5d2cc600

E.3 Design of the hash files Application
The hash files application runs on top of NPS Cell PPU Hash Utilities. The NPS Cell PPU
Hash Utilities drive one or more SPUs which in turn make calls to Cell SPE Hash Utilities for
performing the actual hashing. The hash files application is available in our source tree at
src/hash algorithms/cell hash.

E.3.1 Local Data Structures
• lanes spu ctx ptr[MAX SPUS] contains the lane SPU context pointers for each

SPU performing lane processing. Lane SPU context pointers identify the SPU to use
when hashing on SPUs in lanes.

• data ctx ptr[MAX SPUS][2][4] contains a matrix of data context pointers. A set
of pointers is defined for each SPU. On each SPU, two sets are provided, allowing double-
buffering of file reads. Four pointers per SPU set are provided to support processing in
four lanes.

• file ctx ptr queue[MAX SPUS][4] contains a matrix of file pointers, one per
lane per SPU.
When new files are read, they are bound to a position in the file ctx ptr queue and
in the data context ptr. When a file is read and it reaches EOF, its file context is
removed from file ctx ptr queue so that a new file context may be placed there,
but the file context is not deallocated. File contexts are deallocated by local helper func-
tion clear hash state after hashing for the file has fully completed. Managing file
contexts this way allows lanes to have data from a new file on the next cycle after the
previous file, allowing a new file to be loaded and read before the hash for the previous
file is calculated and reported.

E.3.2 Local Helper Functions
These functions assist the hash files program by wrapping functions into conceptual tasks
in groups of four for lane processing.

• start hashing() schedules the hashing of four data contexts on an SPU based on
the SPU and dataset index values.

• report hashes() prints calculated Sector hashes for the four datasets identified by
the given SPU and dataset index. Where file contexts indicate EOF, calculated file hashes
are also printed.

• clear hash state() calls data clear hash state() to clear the hash state
for each of the four datasets identified by the given SPU and dataset index. When datasets
are at EOF and hashes have been consumed, their associated files are closed.

33

• read files() calls function file read sectors() to read four files into data
contexts identified by the given SPU and dataset index. If a file is at EOF, it is removed
from file ctx ptr queue and a new file is loaded and read in its place.

E.3.3 hash files Main Entry
The main entry parses input to identify the following runtime parameters:

• num spus identifies the number of SPUs to parallel-process on. One SPU context is
created for each SPU.

• hash flags identifies the hash algorithms to be performed on the files, up to six algo-
rithms: file and Sector hashes for SHA-256, MD5, and SHA-1 algorithms.

• list filename identifies the file containing the list of filenames to be hashed.
• sectors per read identifies the maximum number of sectors to read in a file read

operation.

Once these runtime parameters are set, the main program calls function process files lanes()
which allocates processing resources, iteratively reads and hashes files using lane processing,
then deallocates resources and exits.

E.3.4 Wrapper Function process files lanes()
This function opens SPU and data resources for hashing in lanes, iteratively hashes files using
double-buffering, closes SPU and data resources, then exits. Flow is as follows:

1: create n SPU contexts using lanes open spu(), create a matrix of data contexts using data alloc(),
and open the list of filenames to be hashed using local helper function open list()

2: loop
3: for each SPU n do
4: poll SPU availability using function lanes poll()
5: if poll status indicates that the SPU is ready then
6: start hashing the next set of lanes on the SPU using local helper function start hashing()
7: report hashes from the current set of lanes using local helper function report hashes()
8: clear hash states from the current set of lanes using local helper function clear hash state()
9: read files into the current set of available lanes using local helper function read files()

10: swap the current index and next index values for SPU n for the next loop through
11: end if
12: end for
13: exit loop if the filename list is exhausted and all data context states are at DATA EMPTY
14: end loop
15: close the list of consumed filenames using local helper function close list(), close all data

contexts using data free(), and close the n SPU contexts using lanes close spu()

Note that the first iteration of the loop hashes and reports empty data. This is acceptable because
hashing and printing empty data does nothing. Also note that file reads are double-buffered and
hashing is started immediately after polling indicates that the SPU is ready. This design strategy

34

minimizes the delay between when an SPU is ready and when the SPU is tasked with work,
improving performance.

E.3.5 PPU Call Tree
The PPU call tree is shown in Figure 9.

hash_files *1

process_files_lanes *2

start_hashing *2 report_hashes *2

clear_hash_state *2

read_files *2

lanes_hash *4 print_hashes *3

data_clear_hash_state *5 file_close_from_list *2

file_close *5

file_open_from_list *2

file_open *5

file_read_sectors *5

*1 Application: hash_files.c
*2 Helper function: process_files_lanes.c
*3 Helper function: print_hashes.c
*4 PPU Utilities: lanes_hash.c
*5 PPU Utilities: file_context.c

Figure 9: PPU call tree.

E.3.6 Example Flow
The following example steps illustrate state transition flow as two files are loaded and hashed
on one SPU. For simplification, only one SPU and one lane are shown.

1. Start: No files have been read, data contexts are in their initial condition, and the SPU is
ready. See Figure 10.

file1
file2
EOF

Next

File List Pointer

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[0]

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[1]

state = SPU_AVAILABLE

SPU Context

None active

NULL

Active File Contexts

Mapped File Context Pointer

Figure 10: Step 1: Resources in their initial starting state.

2. Poll until SPU done: The SPU has not been tasked, so this returns immediately.
3. Start hashing data ctx[1]: The data context is empty, so the SPU is not tasked.

35

4. Report hashes for data ctx[0]: The data context is empty, so nothing is reported.
5. Clear hashes for data ctx[0]: The data context is empty, so no action is taken.
6. Read file file1 to data ctx[0]:

(a) The file context pointer mapped to this lane is NULL, so get the next filename
file1 from the file list pointer, open an active file context for it, and map it to
the data context.

(b) Read into data ctx[0] from the newly mapped file1. Because the file is small,
the file context reaches EOF on this first read and the data context is also marked
EOF.

See Figure 11.

file1
file2
EOF

Next

File List Pointer

state = DATA_READ
num_current_bytes = 500
file_ctx_ptr = >file1
EOF=1

Data Context[0]

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[1]

state = SPU_AVAILABLE

SPU Context

“file1”, EOF=1

>file1

Active File Contexts

Mapped File Context Pointer

Figure 11: Step 6: Resources after reading file file1.

7. Continue the processing loop because the file list has not reached EOF yet.
8. Poll until SPU done. The SPU has still not been tasked, so this returns immediately.
9. Start hashing data ctx[0]:

(a) The SPU state transitions to SPU NOT AVAILABLE.
(b) Data context state for data ctx[0] transitions to DATA HASHING.
(c) The PPU signals the SPU to start hashing.

See Figure 12.

file1
file2
EOF

Next

File List Pointer

state = DATA_HASHING
num_current_bytes = 500
file_ctx_ptr = >file1
EOF=1

Data Context[0]

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[1]

state = SPU_NOT_AVAILABLE

SPU Context

“file1”, EOF=1

>file1

Active File Contexts

Mapped File Context Pointer

Figure 12: Step 9: Resources after starting to hash data ctx[0].

10. Report hashes for data ctx[1]: Data contexts are still empty, so nothing is reported.

36

11. Clear hashes for data ctx[0]: Data contexts are already empty, so no action is taken.
12. Read file file2 to data ctx[1]:

(a) The file context pointer mapped to this lane is NULL, so get the next filename
file2 from the file list pointer, open an active file context for it, and map it to
the data context.

(b) Read into data ctx[1] from mapped file2. Because the file is small, the file
context reaches EOF on this first read and the data context is also marked EOF.

See Figure 13.

file1
file2
EOFNext

File List Pointer

“file1”, EOF=1
“file2”, EOF=1

state = DATA_HASHING
num_current_bytes = 500
file_ctx_ptr = >file1
EOF=1

Data Context[0]

state = DATA_READ
num_current_bytes =700
file_ctx_ptr = >file2
EOF=1

Data Context[1]

state = SPU_NOT_AVAILABLE

SPU Context

>file2

Active File Contexts

Mapped File Context Pointer

Figure 13: Step 12: Resources after reading file file2.

13. Continue the processing loop because the file list has not reached EOF yet.
14. Poll until SPU done to make sure the SPU has completed hashing data ctx[0]. When

done:
(a) The SPU state has transitioned to SPU AVAILABLE.
(b) Data context data ctx[0] is transitioned to DATA HASHED.

15. Start hashing data ctx[1]:
(a) The SPU state transitions to SPU NOT AVAILABLE.
(b) Data context state for data ctx[1] transitions to DATA HASHING.
(c) The PPU signals the SPU to start hashing.

See Figure 14.

file1
file2
EOFNext

File List Pointer

state = DATA_HASED
num_current_bytes = 500
file_ctx_ptr = >file1
EOF=1

Data Context[0]

state = DATA_HASHING
num_current_bytes =700
file_ctx_ptr = >file2
EOF=1

Data Context[1]

state = SPU_NOT_AVAILABLE

SPU Context

“file1”, EOF=1
“file2”, EOF=1

>file2

Active File Contexts

Mapped File Context Pointer

Figure 14: Step 15: Resources after starting to hash data ctx[1].

37

16. Report hashes for data ctx[0]:
(a) Report file hashes because data ctx[0] indicates EOF.
(b) Do not report Sector hashes. The file size is less than 4 KBytes so no Sector hashes

are computed.
17. Clear hashes for data ctx[0]:

(a) data ctx[0] indicates EOF so close the active file context for file1 indicated
by data ctx[0].

(b) The data ctx[0] state transitions to DATA EMPTY.
See Figure 15.

file1
file2
EOFNext

File List Pointer

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[0]

state = DATA_HASHING
num_current_bytes =700
file_ctx_ptr = >file2
EOF=1

Data Context[1]

state = SPU_NOT_AVAILABLE

SPU Context

“file2”, EOF=1

>file2

Active File Contexts

Mapped File Context Pointer

Figure 15: Step 17: Resources after clearing data ctx[0].

18. Read nothing because the read returned EOF.
19. Continue the processing loop because although the file list is at EOF, data ctx[1]

state has not transitioned back to DATA EMPTY.
20. Poll until SPU done to make sure the SPU has completed hashing data ctx[1]. When

done:
(a) The SPU state transitions to SPU AVAILABLE.
(b) Data context data ctx[1] transitions to DATA HASHED.

See Figure 16.

file1
file2
EOFNext

File List Pointer

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[0]

state = DATA_HASHED
num_current_bytes =700
file_ctx_ptr = >file2
EOF=1

Data Context[1]

state = SPU_AVAILABLE

SPU Context

“file2”, EOF=1

>file2

Active File Contexts

Mapped File Context Pointer

Figure 16: Step 20: Resources after waiting for hash data ctx[1] to complete.

21. Start hashing data ctx[0]:

38

(a) The SPU state transitions to SPU NOT AVAILABLE.
(b) Data context state for data ctx[0] transitions to DATA HASHING.
(c) The PPU signals the SPU to start hashing.

See Figure 17.

file1
file2
EOFNext

File List Pointer

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[0]

state = DATA_HASHED
num_current_bytes =700
file_ctx_ptr = >file2
EOF=1

Data Context[1]

state = SPU_NOT_AVAILABLE

SPU Context

“file2”, EOF=1

>file2

Active File Contexts

Mapped File Context Pointer

Figure 17: Step 21: Resources after starting to hash data ctx[0].

22. Report calculated hashes for data ctx[1]:
(a) Report file hashes because data ctx[1] indicates EOF.
(b) Do not report Sector hashes. The file size is less than 4 KBytes so no Sector hashes

are computed.
23. Clear hashes for data ctx[1]:

(a) data ctx[1] indicates EOF so close the active file context for file2 indicated
by data ctx[1].

(b) Transition the data ctx[1] state to DATA EMPTY.
See Figure 18.

file1
file2
EOFNext

File List Pointer

state = DATA_EMPTY
num_current_bytes = 0
file_ctx_ptr = NULL

Data Context[0]

state = DATA_EMPTY
num_current_bytes =0
file_ctx_ptr = NULL

Data Context[1]

state = SPU_NOT_AVAILABLE

SPU Context

None active

NULL

Active File Contexts

Mapped File Context Pointer

Figure 18: Step 23: Resources after clearing data ctx[1].

24. Read nothing (again) because the file list pointer is at EOF.
25. Terminate the processing loop because the file list is at EOF and all data ctx[*] states

have transitioned back to DATA EMPTY.

39

E.4 Design of SPU Program lanes spu
The lanes spu Program initializes, then loops receiving and processing hashing jobs until
the SPU DONE signal is received.

The main SPU program flow is as follows:
1: obtain PPU shared data space ea ppu shared data from parameter input
2: obtain the SPU index used for diagnostics from parameter input
3: initialize incoming and outgoing signal values to inactive
4: mbox mail the SPU shared data space ls spu shared data to the PPU
5: loop
6: continue loop until signal changes from SPU NO SIGNAL
7: take the tick start timestamp if timestamp is compiled in via the TIMESTAMP compiler

flag
8: quit if signal is SPU DONE
9: run the hash job by calling function spu process lanes()

10: take the tick finish timestamp if timestamp is compiled in via the TIMESTAMP compiler
flag

11: signal SPU AVAILABLE to the PPU to indicate that the SPU is done and is ready for a new job
12: end loop

The spu process lanes program flow processes individual hashing assignments by read-
ing four data contexts and performing hashing on them as follows:

1: start and finish DMA get set of four data context pointers
2: start and finish DMA get four data contexts
3: start and finish DMA get three starting file hash values
4: set sector index to 0 for looping processing one Sector at a time
5: start DMA get current (first) data buffer
6: while more data do
7: start DMA get next data buffer using DMA tag for next index
8: wait for DMA get of current DMA tag to complete (this includes the data buffer and sector hashes)
9: perform a file hash of the current data buffer, finalizing any file hashes that are at EOF

10: perform a sector hash of the current data buffer
11: start DMA put of current calculated sector hashes using DMA tag for current index
12: swap current and next index values
13: end while
14: start and finish DMA put three calculated file hash values
15: wait for DMA put of final sector hash using DMA tag for the last index, which is now next

E.4.1 SPU Call Tree
The SPU call tree is shown in Figure 19.

40

lanes_spu *1

start_get *2
wait_tag *2
do_hash *2
get_file_hashes *2
put_file_hashes *2
put_sha256_sector_hashes *2
put_md5_sector_hashes *2
put_sha1_sector_hashes *2

spu_process_lanes *2

*1 SPU Application: lanes_spu.c
*2 Helper function: spu_process_lanes.c
*3 SPU Utilities

sha256_hash_4lanes *3
sha256_hash *3
sha256_hash_4sectors *3
md5_hash_4lanes *3
md5_hash *3
md5_hash_4sectors *3
sha1_hash_4lanes *3
sha1_hash *3
sha1_hash_4sectors *3

finalize_sha256_data *2
finalize_md5_data *2
finalize_sha1_data *2

Figure 19: SPU call tree.

41

F Application hash single file for Maximum Single-file
Throughput

Maximum single-file throughput is achieved using application hash single file.

F.1 hash single file User Interface
Usage:

hash_single_file -f <filename> -a <hash algorithm>
[-r <num_4K_sectors>] [-c] [-v]

-f <filename> specifies the name of the file to be hashed. This selection is required.

-a <algorithm> identifies the hashing algorithm to use, and is one of sha256, md5 or
sha1.

-r <num 4K sectors> identifies the number of sectors to read per file read. The value
should be large enough to reduce iterative reading, but small enough to fit read data in
system memory without causing page caching. Devault is 1024.

-c displays SPU resource information.

-v displays input parameters.

F.2 Output
Output is sent to stdout and consists of one file hash value as follows:

<filename> <algorithm> <hash value>

Text <filename> is the path of the filename hashed, <algorithm> is one of SHA-256,
MD5, or SHA-1, and <hash value> consists of sets of eight-digit hexadecimal values sepa-
rated by single space characters.

An example MD5 file hash for file myfile follows:

myfile MD5 bbc725c7 eaabd331 252dde6b 5d2cc600

42

F.3 Design of the hash single file Application
The hash single file Application runs on top of NPS Cell PPU Hash Utilities. The NPS
Cell PPU Hash Utilities drive either a single SPU for hashing MD5 or a pair of SPUs for
hashing SHA-256 or SHA-1. The SPUs make calls to Cell SPE Hash Utilities for performing
the actual hashing. The hash single file application is available in our source tree at
src/hash algorithms/cell hash.

The hash single fileApplication uses file process pipe.c to hash SHA-256 or SHA-
1 and uses file process md5.c to hash MD5. Both files are identical except that process pipe.c
makes calls to Pipe Hash interfaces and process md5.c makes calls to Single MD5 Hash
interfaces.

F.3.1 Local Data Structures
• pipe spu ctx ptr (or md5 spu ctx ptr) contains the SPU context pointer for the

SPUs (or SPU) performing the hash processing.
• data ctx ptr[2] contains two data context pointers for supporting hashing using

double-buffering.
• file ctx ptr points to the file context that will be active through the duration of hash-

ing.

F.3.2 Local Helper Functions
These functions assist the hash single file program by wrapping functions into concep-
tual tasks for double-buffered hash processing.

• start hashing() schedules the hashing of the data context.
• report hash() resets the data context for the next read. Where file contexts indicate

EOF, the calculated file hash is also printed.
• clear hash state() calls data clear hash state() to clear the hash state

for the dataset. When clear hash state() is called and the associated data context
is at EOF, the associated file is closed.

• read file() reads the file into space in the data context. If the file is at EOF, it is
removed from file ctx ptr.

• data done() indicates when data processing has completed by identifying when both
data contexts have returned to the DATA EMPTY state.

F.3.3 hash single file Main Entry
The main entry parses input to identify the following runtime parameters:

• hash flags identifies the file hash algorithm to be performed on the file, and is one of
SHA-256, MD5, or SHA-1.

• filename identifies the file to be hashed.
• sectors per read identifies the maximum number of sectors to read in a file read

operation.

43

Once these runtime parameters are set, the main program calls function process pipe()
(or process md5()) which allocates processing resources, iteratively reads and hashes the
specified file, then deallocates resources and exits.

F.3.4 Wrapper Function process pipe() (or process md5())
This function opens SPU and data resources for hashing, iteratively hashes the file using double-
buffering, closes SPU and data resources, then exits. Flow is as follows:

1: create an SPU context using pipe open spu() (or md5 open spu()), create the two data con-
texts using data alloc(), and open the file to be hashed, assigning it to file ctx ptr

2: loop
3: poll SPU availability using function pipe poll() or md5 poll()
4: if poll status indicates that the SPU is ready then
5: start hashing the next file read on the SPU using local helper function start hashing()
6: report, if done, the hash from the current read using local helper function report hash()
7: clear the current hash state and, if done, close the file, using local helper function clear hash state()
8: read from the file into space in the current data context using local helper function read file()
9: swap the current index and next index values for the next loop through

10: end if
11: exit loop if both data context states are at DATA EMPTY
12: end loop
13: close both data contexts using data free() and close the SPU context using pipe close spu()

(or md5 close spu())

Note that the first iteration of the loop hashes and reports empty data. This is acceptable because
hashing and printing empty data does nothing. Also note that file reads are double-buffered and
hashing is started immediately after polling indicates that the SPU is ready. This design strategy
minimizes the delay between when an SPU is ready and when the SPU is tasked with work,
improving performance.

F.4 Design of SPU Program pipe1 spu
After the pipe1 spu Program initializes, it loops receiving and processing hashing jobs until
the SPU DONE signal is received.

The main outer SPU flow is identical to that of the lanes spu program except that it addi-
tionally receives the EA of the pipe2 processing space during initialization so that the two pipes
can interact.

The inner flow is managed by function spu process pipe1 which processes individual
hashing assignments by reading the data context provided by the PPU and creating preprocessed
schedule data from data identified in the data context as follows:

1: start and finish DMA get of the data context
2: done if there are 0 bytes to process
3: set sector index to 0 for looping processing one Sector at a time
4: start DMA get current (first) data buffer using DMA tag for current sector index

44

5: loop
6: if more data is available on the next sector index then
7: start DMA get next data buffer using DMA tag for next index
8: end if
9: wait for DMA get of current DMA tag to complete

10: wait for pipe2 to indicate that the current schedule data buffer may be changed
11: calculate current schedule data from current data
12: signal pipe2 that the current schedule data buffer is ready
13: if last iteration then
14: if data context indicates EOF then
15: wait for pipe2 to indicate that the current + 1 schedule data buffer may be changed
16: finalize current data into the current + 1 schedule data buffer
17: signal pipe2 that the current + 1 schedule data buffer has finalization data
18: end if
19: break from loop
20: end if
21: increment current by 1
22: end loop

F.5 Design of SPU Program pipe2 spu
After the pipe2 spu Program initializes, it loops pulling and hashing schedule data until the
SPU DONE signal is received.

The main outer SPU flow is identical to that of the lanes spu program except that it addi-
tionally receives the EA of the pipe1 processing space during initialization so that the two pipes
can interact.

The inner flow is managed by function spu process pipe2 which processes individual
hashing assignments by reading the data context provided by the PPU and performing hashing
based on information from the data context and from schedule data prepared from pipe1 as
follows:

1: start and finish DMA get of the data context
2: done if there are 0 bytes to process
3: start and finish DMA get of the starting hash value
4: set sector index to 0 for looping processing one Sector at a time
5: wait for pipe1 to signal that schedule data at the current sector index is available
6: start DMA get current (first) schedule data buffer from pipe1 using DMA tag for current index
7: loop
8: if more data is available on the next sector index then
9: wait for pipe1 to indicate that next schedule data is available

10: start DMA get next schedule data using DMA tag for next index
11: end if
12: wait for DMA get of current DMA tag to complete
13: signal pipe1 that the current schedule data buffer may be changed
14: calculate the running hash from the current schedule data

45

15: if last iteration then
16: if data context indicates EOF then
17: wait for pipe1 to indicate that the schedule data buffer at index current + 1 has finalization

data
18: start and finish DMA get of the schedule data from pipe1 current + 1 index to pipe2 current

+ 1 index
19: finalize the calculated hash by hashing the finalization schedule data at the current + 1 index
20: end if
21: break from loop
22: end if
23: increment current by 1
24: end loop
25: start and finish DMA put of the calculated hash value

F.6 Design of SPU Program md5 spu
After the md5 spu Program initializes, it loops receiving and processing hashing jobs until the
SPU DONE signal is received.

The main outer SPU flow is identical to that of the lanes spu program.

The inner flow is managed by function spu process md5 which processes individual hash-
ing assignments by reading the data context provided by the PPU and then hashing the data
identified in the data context as follows:

1: start and finish DMA get of the data context
2: done if there are 0 bytes to process
3: start and finish DMA get of the starting hash value
4: set sector index to 0 for looping processing one Sector at a time
5: start DMA get current (first) data buffer using DMA tag for current sector index
6: loop
7: if more data is available on the next sector index then
8: start DMA get next data buffer using DMA tag for next index
9: end if

10: wait for DMA get of current DMA tag to complete
11: hash the current data
12: if last iteration then
13: if data context indicates EOF then
14: finalize current data
15: end if
16: break from loop
17: end if
18: increment current by 1
19: end loop
20: start and finish DMA put of the calculated hash value

46

References
[1] Raghav Bhaskar, Pradeep K. Dubey, Vijay Kumar, Atri Rudra, and Animesh Sharma. Efficient Galois field arithmetic on

SIMD architectures. June 7–9 2003.

[2] Thomas Chen, Ram Raghaven, Jason Dale, and Eiji Iwata. Cell Broadband Engine Architecture and its first implemen-
tation. developerWorks, November 29 2005. http://www-128.ibm.com/developerworks/power/
library/pa-cellperf/.

[3] Neil Costigan and Michael Scott. Accelerating SSL using the vector processors in IBM’s Cell Broadband Engine for
Sony’s Playstation 3. Cryptology ePrint Archive, Report 2007/061, 2007. http://eprint.iacr.org/.

[4] Owen Harrison and John Waldron. AES encryption implementation and analysis on commodity graphics processing units.
pages 209–226, September 13 2007. LNCS Volume 4727/2007.

[5] NIST. Secure hash standard (SHS). Technical Report FIPS PUB 180-3, National Institute of Standards and Technology
(NIST), October 2008.

[6] R Rivest. The MD5 message-digest algorithm. Technical Report RFC 1321, MIT Laboratory for Computer Science and
RSA Data Security, April 1992.

[7] Jon Stokes. End of the line for ibm’s cell, November 23 2009. http://arstechnica.com/hardware/
news/2009/11/end-of-the-line-for-ibms-cell.ars.

[8] Jason Yang and James Goodman. Symmetric key cryptography on modern graphics hardware. pages 249–264, 2007.
LNCS 4833.

47

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research and Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, California

	INITIAL DISTRIBUTION LIST_NPS-CS-10-011.pdf
	INITIAL DISTRIBUTION LIST

